Athlete's Heart Blog

Dr Larry Creswell

Dr. Larry Creswell on athletes and heart health.
About Larry / Contact
  • Facebook
  • RSS
  • Twitter

Writing on…

Copyright © 2021 · Wintersong Pro Theme on Genesis Framework · WordPress · Log in

You are here: Home / Archives for cardiac arrest

More on Triathlon Fatalities–A Scientific Report

September 18, 2017 By Larry Creswell, MD 4 Comments

Readers here at the blog will know that I’ve had a long-standing interest in triathlon fatalities. My interest was originally sparked by media reports and the paradox that seemingly healthy and fit triathletes might die on race day.

I was involved with an internal review of this problem at USA Triathlon (USAT), the governing body for the sport of triathlon in the United States. In 2011, that task force issued a formal report and set of recommendations for athletes, event organizers, and USAT itself.  Those written recommendations are still valuable today as we work to reduce the number of triathlon race-related fatalities.

In this week’s edition of Annals of Internal Medicine, I joined with Drs. Kevin Harris and Barry Maron from the Minneapolis Heart Institute in reporting on “Death and Cardiac Arrest in U.S. Triathlon Participants, 1985-2016:  A Case Series.”  In this scientific report, we’ve gathered information about 122 athletes who died and another 13 athletes who suffered cardiac arrest but survived during triathlon races in the United States over the past 3 decades.  This is, by far, the most comprehensive scientific report on this subject.

Special thanks go to the leadership at USAT which recognized the importance of this issue, has been proactive in working to reduce the number of race-related fatalities, and was extraordinarily helpful to our investigative team as we assembled the information for our new report.

 

The Important Observations

  • Victims were 47 +/- 12 years old
  • 85% were men
  • Almost 40% were first-time triathlon participants
  • There were no elite or professional athletes among the victims
  • The overall rate for fatalities or cardiac arrest was 1.74 per 100,000 participants (2.40 for men, 0.79 for women). For comparison, the rates of cardiac arrest (including fatalities) are approximately 1.0 per 100,000 participants in marathons and 0.3 per 100,000 participants in half marathons.
  • The fatality risk in triathlon increases exponentially with age; the fatality rate was 18.6 per 100,000 participants among men 60+ years old
  • Fatality rates were similar for short, intermediate, and long-distance races
  • The majority of deaths (74%) occurred during the swim segment; smaller numbers of deaths occurred during the bike or run segments or after finishing the race
  • Among 22 fatalities occurring during the bike segment, 15 were due to traumatic injuries
  • At autopsy, clinically relevant (but presumably previously unrecognized) heart/vascular disease was found in many victims

 

A Recipe for Doing Better

We should focus on two strategies for reducing the number of fatalities:  1) we should work to prevent incidents of race-related cardiac arrest and 2) we should work to improve the survival rate for any such victims of cardiac arrest.  Athletes, physicians, event organizers, safety personnel, and sport governing bodies can all play an important role.

Athletes should:

  • Make certain that their participation in a particular race is in keeping with their health, both chronic and acute, as well as their ability and preparation.
  • Consider their heart health before participating. This may be particularly true for first-time participants and for men who have reached middle age. For older men, testing for “hidden” coronary artery disease (CAD) or other forms of cardiovascular disease may be appropriate.
  • Assess their health on race day and consider not racing if they are “sick.” Symptoms, particularly systemic symptoms like fever, are related to DNF rates in other sports settings.
  • Be prepared for the rigors of a triathlon swim. It is important to be a capable swimmer and to have practiced open water swimming in advance of the race.
  • Think to STOP at the first sign of medical troubles (unexplained shortness of breath, chest pain/discomfort, or light-headedness), particularly during the swim segment.

Physicians should:

  • Be aware of the risks of participating in triathlon and be in a position to counsel their athlete patients about those risks in the context of the patient’s specific health situation.
  • Consider the potential value of cardiac screening, particularly for occult CAD in men who have reached middle age. Evidence-based screening protocols are not yet available, so an approach will need to be individualized. In most cases, an evaluation of the traditional risk factors for CAD would be appropriate and in some cases, additional testing such as calcium-scoring cardiac CT or stress testing may be appropriate. Athletes who are just beginning an exercise program should receive special attention in this regard.

Event organizers should:

  • Develop a robust safety plan, particularly for the swim segment, that enables prompt (near instantaneous) identification of a lifeless victim, and then rescue of that individual to a location where CPR, defibrillation, and advanced life support can be provided.
  • Have a communication system for all individuals involved in race-day safety.
  • Rehearse the safety response to a lifeless victim, especially for the swim segment.

Race-day safety officials should:

  • Be trained in CPR and use of the AED.
  • Be familiar, through rehearsal, with the communication and safety plans.

Sports governing bodies should:

  • Provide education for athletes, event organizers, medical directors, and volunteer safety officials about life-threatening race-day emergencies.
  • Develop rules and sanctioning requirements that promote athlete safety.

 

Reference:

  1. Harris KM, Creswell LL, Haas TS, Thomas T, Tung M, Isaacson E, Garberich RF, Maron BJ. Death and cardiac arrest in U.S. triathlon participants. Annals of Internal Medicine 2017 (in press).

 

Related Posts:

  1. Should You Race When You’re Sick?
  2. Triathlon Fatalities: 2013 in Review
  3. New USA Triathlon Water Temperature Safety Recommendations
  4. Fatal Arrhythmias in Open Water Swimming: What’s the Mechanism?

Filed Under: Race safety, Sports-related sudden cardiac death Tagged With: athlete, cardiac arrest, death, fatality, heart, race safety, triathlete, triathlon

Japan and Triathlon Fatalities

February 25, 2016 By Larry Creswell, MD 2 Comments

TokyoShrineTower

 

 

 

 

 

 

I’ve recently returned from a trip to Tokyo, Japan, where I was the guest of the Japan Triathlon Union (JTU).  The occasion was their organization’s 5th Annual Forum, which this year was devoted to the issue of triathlon race safety.

I appreciate the kind invitation from Mr. Otsuka and Mr. Nakayama, the help of JTU’s Kenta Kodama with the travel arrangements, and the tremendous help with translation from Ms. Tomoko Wada.  My hosts were gracious in every way.  I must also thank the kind folks at USA Triathlon (USAT)–Terri Waters and Kathy Matejka, for help with gathering some updated information to present in Japan, and USAT President Barry Siff for making the necessary connections with JTU.

As readers here will know, I’ve had an interest in triathlon-related fatalities and the broader issue of sudden cardiac death among endurance athletes.  I had the opportunity to lead a recent USAT effort to learn more about triathlon-related fatalities and our work resulted in a 2012 report entitled “Fatality Incidents Study.” As I’ve said before, this report is good reading for athletes and event organizers who are looking for recommendations about how to race safely and conduct events with athlete safety as a first priority.

Sadly, there were 6 triathlon-related fatalities in Japan in 2015, the most ever in a single year there.  Dr. Ryoji Kasanami, the Chairman of the JTU’s Medical Committee, had become familiar with our work here in the USA and was interested in learning how our findings might help JTU with better safety planning, on the parts of both athletes and event organizers.

I gave a talk at the Forum where I outlined the USAT experience with fatalities since 2003.  In large part, the information is summarized in my previous blog post, Triathlon Fatalities: 2013 in review.  I was able to include some updates through the 2015 season, but the central themes were the same now as then:

  • There is variation in the fatality rate from year to year, with an overall fatality rate of ~1 per 70,000 participants
  • Most fatalities occur during the swim portion of events
  • Most victims are male
  • Fatalities are most common among middle-aged athletes
  • There have been no fatalities among elite (professional) athletes
  • Among victims, there is a wide range in athlete experience and ability
  • There is a small number of trauma-related fatalities, arising from bicycle crashes
  • Among non-traumatic fatalities, the vast majority suffered cardiac arrest at the race venue
  • Available autopsy information for non-traumatic fatalities has shown heart abnormalities in the majority

Dr. Kevin Harris, from the Minneapolis Heart Institute, and I will be presenting an abstract at the upcoming American College of Cardiology meeting in April in Chicago on this topic.  We’ll be sharing consolidated information about 106 fatalities, including the autopsy findings from 41 of the non-traumatic fatalities.  I’ll report back here at the blog with an update in April.

Dr. Kasanami shared information about the Japanese experience with 37 fatalities over the past 3 decades.  There were many similarities to the experience in the USA:

  • Some years were “safer” than others
  • Most fatalities occurred during the swim portion of events
  • Most victims were male
  • Fatalities were most common among middle-aged athletes
  • There have been no fatalities among elite athletes
  • There were no fatalities in young athletes

There were also some notable differences:

  • There were no fatalities during the bike portion
  • Autopsy was seldom performed in the victims

Interestingly, the bike course is always closed to vehicular traffic during triathlons in Japan, and this might obviously have an impact on the number of crashes and trauma-related fatalities.  One interesting anecdote shared by a pathologist attendee related to the finding of inner ear bleeding (hemorrhage) in 2 victims.  I’m not sure about the significance of this observation.

I’m intrigued by the many similarities of the Japanese experience with race-related fatalities.  I also know from preliminary discussions with officials at Triathlon Australia that the experience in Australia is similar as well.  I suspect that the causes of cardiac arrest in participating athletes are common broadly, and are more dependent on simply the human condition rather than race-related factors that might be specific to one region or another (eg, race safety or technical rules, approach to medical care on site, warm-up, etc.).

I’ll mention here that the Medical Committee of the International Triathlon Union (ITU) is very interested in this issue, particularly as it relates to elite athletes.  I understand that efforts are being made to implement the requirement for mandatory periodic health evaluations, including EKG screening, for youth, U23, and elite athletes who participate in ITU races, perhaps beginning in the 2017 season.  This follows on the heels of the international rowing federation adopting a similar policy, gradually, during the 2014 and 2015 seasons.

I worry a little about the ITU focus on elite athletes, since the problem of race-related fatalities seems to be largely one of age-group athletes, but I hope that age-group athletes will be paying attention to any recommendations that are implemented.

Lastly, I’ll close with some photographs from the trip.  Since this was my first-ever visit to Tokyo and Japan, my hosts graciously afforded me about 8 hours of free time one day for the purpose of sightseeing and I took advantage.  I hope to return to Japan soon to see even more.

TokyoFishMarketTokyoSkyline


 

 

 

 

 

 

ImperialPalace

 

 

 

 

Related Posts:

  1. Triathlon Fatalities: 2013 in Review
  2. Fatal Arrhythmias in Open Water Swimming: What’s the Mechanism?
  3. Triathlon-Related Deaths: The Facts and What You Should Know

 

Filed Under: Exercise & the heart, My adventures, Sports-related sudden cardiac death Tagged With: Asia, athlete, cardiac arrest, fatality, Japan, sport, sudden cardiac death, triathlon

Laurent Vidal, Elite Triathlete 1984-2015

November 15, 2015 By Larry Creswell, MD Leave a Comment

200px-Laurent_Vidal_Pontevedra2011_1

 

 

 

 

 

 

The very sad news came this week that retired French elite triathlete, Laurent Vidal, died in his sleep at his home in southern France.

There has been a worldwide outpouring of emotion.  I particularly enjoyed this video.

Life-threatening heart problems are unusual in Olympic-caliber athletes, but Vidal suffered an episode of cardiac arrest at the swimming pool last spring.  I wrote about that episode and his remarkable recovery in a blog post that focused on cardiac arrest, more generally.

After his recovery, Vidal shared very little about his diagnostic evaluation, any conditions that were discovered, and any implications regarding his prognosis.  He immediately retired from the sport of triathlon, though, and I suspect that he was advised that continued participation posed some danger.  He remained physically active over these past months, though, and often shared pictures of himself bicycling or hiking.  Media reports this week mention a pacemaker and I wonder if he actually received an internal cardioverter-defibrillator (ICD) for “secondary prevention” in case of a repeat episode of cardiac arrest.  Unfortunately, even an ICD doesn’t guarantee long-term survival in situations like this.  It’s worth reflecting that Vidal’s first indication of a potential problem was a couple years earlier, when he had an episode of syncope, or fainting.  That’s an important problem to get sorted out.

Vidal’s story surely reminds us that life is sometimes too short.  The remembrances on social media this week speak to the way that Vidal embraced life.  I wish I’d had the chance to meet Vidal.  I’ll always remember his smiling face.

Related Posts:

  1. Laurent Vidal and Cardiac Arrest
  2. Elite Triathles and Heart Problems
  3. Cardiac Screening in Adult Recreational Athletes

Filed Under: Current events, Exercise & the heart, Famous athletes with heart problems Tagged With: athlete, cardiac arrest, France, heart

Laurent Vidal and Cardiac Arrest

April 30, 2014 By Larry Creswell, MD Leave a Comment

Vidal

The news last Thursday was startling.  Laurent Vidal, the 30-year-old French triathlete, reportedly suffered a “heart attack” and cardiac arrest during a swim training session.  You may recall that Vidal is the star of the French triathlon team and finished 5th in the London Olympics.  By report, he complained of chest pain and later collapsed in cardiac arrest.  News accounts indicated that he was revived, regaining consciousness, and was transported to the hospital for further care.  Follow-up reporting suggested that therapeutic hypothermia as well as induced coma had been employed in his treatment.  Over the weekend there was very little reporting, though, at least in the English news media, so I don’t have any additional information about his condition to share here.  On Monday came a Tweet from Vidal:  “Hello world.”  I’ll take that as a good sign and wish Laurent and his fiancé, fellow triathlete Andrea Hewitt, all the best during his recovery.

Interestingly, in a report this morning, came some additional information about Vidal’s medical history.  We learned that Vidal had suffered from exertional syncope (blacking out while exercising) on two previous occasions and had undergone a detailed evaluation after the 2nd episode, in 2011.  At that time he was given the diagnosis of neurocardiogenic syncope, a condition that was thought not to be serious.  I’m sure these previous incidents will be given new consideration in light of Vidal’s cardiac arrest episode.

I can tell from the questions I’ve received about this incident that cardiac arrest remains somewhat of a mystery.  Beyond cardiopulmonary resuscitation (CPR), and possibly the use of an automated external defibrillator (AED), most people don’t have much familiarity with the treatment of victims of cardiac arrest.  Non-medical folks might go a lifetime and never witness such an event.  I thought I’d use Vidal’s story as a starting point for a discussion about the treatment of victims of cardiac arrest.

Cardiac Arrest

We use the term “cardiac arrest” when an individual’s heart has stopped beating effectively.  The victim loses consciousness and stops breathing.  When this happens suddenly, without warning, we use the term “sudden cardiac arrest,” or SCA.  The victim of SCA immediately appears lifeless.

Cardiac arrest is a different problem than “heart attack.”  I’ve written a previous blog post on the terminology of cardiac arrest versus heart attack.  In short, a heart attack occurs when there is complete blockage in one of the coronary arteries that brings blood flow and oxygen to the heart muscle.  This condition typically produces chest pain.  Affected patients are evaluated with coronary arteriography and undergo procedures like coronary stent placement or heart bypass surgery as treatments.

Cardiac arrest occurs because there is a sudden change in the normal electrical activity of the heart.  There is a collection of abnormal heart rhythms, called arrhythmias, that can be responsible:  ventricular fibrillation (VF), ventricular tachycardia (VT), asystole, or pulseless electrical activity (PEA).  With each of these arrhythmias, the heart does not beat effectively and therefore does not pump any appreciable amount of blood.  The blood pressure falls to zero and a pulse can no longer be felt.

Without treatment, the victim of SCA has died.  The American Heart Association (AHA) suggests a conceptual framework called the “Chain of Survival” to outline the necessary links to increase the odds for survival:

  1. Immediate recognition of cardiac arrest and activation of the emergency response system
  2. Early CPR with emphasis on chest compressions
  3. Rapid defibrillation, if needed
  4. Effective advanced life support
  5. Integrated post-cardiac arrest care.

Initial Treatment

If a victim of cardiac arrest is to become a survivor, there must be prompt and appropriate care at each step along the Chain of Survival.

It is important for bystanders to recognize the victim of cardiac arrest–unconscious, not breathing, no pulse.  The initial treatment is CPR.  In the United States, the AHA and American Red Cross offer classes in CPR.  For people who are not healthcare workers, the AHA teaches chest compression-only CPR, instructing the rescuer to do chest compressions centered over the breastbone, or sternum, at a rate of 100 compressions per minute.  The AHA teaches that the 100 compressions per minute rhythm can be maintained by doing the compressions to the beat of the 1983 Bee Gee’s hit song, “Staying Alive.”  Healthcare workers are taught how to do rescue breathing interspersed between sets of chest compressions, either in 1- or 2-rescuer scenarios.  If no nearby bystanders are trained in rescue breathing, then chest compressions alone are appropriate as an initial treatment.

While CPR is being performed, bystander rescuers need to notify the emergency medical system (EMS) to summon more advanced care for the victim.  In the United States, bystanders can call 9-1-1 to alert the appropriate authorities.  The telephone dispatcher will arrange for emergency medical technicians (EMTs) or paramedics to be dispatched to the scene.  The dispatcher can also remain on the telephone to help provide guidance to the bystanders who are tending to the victim.

If there is an AED nearby, somebody should fetch it.   These devices are often located in public spaces such as schools, shopping centers, fitness centers, etc.  They may also be on hand for special events.  The use of the AED is often taught in conjuction with the basic CPR course.  Even without instruction, the AED is designed to “talk you through” how to use the device in an emergency situation.  The AED is opened and the ON/OFF switch is turned ON.  An electronic voice will provide instructions to attach defibrillator pads to the victim’s chest in 2 locations.  The AED will analyze the victim’s heart rhythm and determine if a defibrillation shock would be helpful.  Such a shock is helpful if the rhythm is VF or VT, but is not helpful if the rhythm is asystole or PEA.  If needed, the AED will ask the rescuers to stand clear and it will deliver an appropriate shock, asking you to resume CPR if the shock does not terminate the arrhythmia.  If the shock is successful, the AED will instruct the rescuers to just monitor the patient.  If no shock is needed, the AED will instruct to continue CPR.  The AED will continue to monitor the heart rhythm and work through this same algorithm repeatedly at several-minute intervals until EMS personnel arrive on the scene.

I mentioned at the outset that the survival rate for out-of-hospital cardiac arrest was poor.  It’s encouraging, though, that in localities or situations where CPR training is widespread, the survival rate can be much higher.  Interestingly, in a recent review of SCA at long-distance running events, the survival rate was reported at 29% and was attributed in large part to prompt CPR provided by bystanders.

Advanced Life Support

The next phase of care might best be called advanced cardiac life support (ACLS).  This care is generally begun by EMTs or paramedics who were dispatched to the scene where a cardiac arrest victim is already receiving CPR by bystanders.  Information about the circumstances leading to the victim’s collapse should be passed along to the medical professionals who respond.  Sometimes there are very helpful details.

Away from the hospital setting, advanced life support is usually provided by EMTs or paramedics who have specialized training in this area.  In the hospital setting, many employees–nurses, physicians, and others–can take classes offered by the AHA to become certified in ACLS.  As a result, there may well be ACLS-trained bystanders when somebody suffers cardiac arrest.

Advanced life support will include both chest compressions as well as rescue breathing.  Supplemental oxygen will be provided and breaths will be administered initially using a bag-valve mask.  If the victim is not immediately revived, an oral or nasotracheal tube may be placed into the trachea (the windpipe) to continue to administer breaths to the victim.  Electrode patches will be placed on the victim’s skin and an EKG monitor will be used to determine the heart rhythm.  With CPR and rescue breathing in progress, the advanced cardiac life support phase of care is governed by algorithms that are specific to the exact type of heart rhythm.  There are 2 primary algorithms–1 for VF/pulseless VT and another for asystole/PEA.  In the hospital setting, we actually have hand-held cards with the algorithms to help guide a team of rescuers.

Included in the algorithms will be the use of medications, if needed, as well as defibrillation, if needed, depending upon the particular heart rhythm.  CPR, rescue breathing, and the resuscitation algorithm is pursued while the victim is transported to the hospital. 

Hospital Care

Efforts at resuscitation continue until either the victim’s normal heart rhythm is restored or the team of caregivers concludes that further efforts will be fruitless.  There is no absolute convention about how long resuscitative efforts should be continued, but there are certainly examples of patients who are successfully resuscitated after prolonged CPR.  As just one example, I’ve written here at the blog about the soccer player, Fabrice Muamba, who was revived after 78 minutes of CPR.

If a victim’s heart rhythm is restored, then there are 2 major immediate goals:  1) prevent a recurrence of the near-fatal arrhythmia and 2) protect the body’s organs, as much as possible, from the effects of the disturbed circulation while the resuscitation efforts were being made.  Efforts at the first goal will depend upon the known, or suspected, cause.  Evaluation and monitoring is conducted to be certain that the blood oxygen levels and blood electrolyte levels are appropriate.  Often, anti-arrhythmic medications will be used for this purpose.  The second goal is also very important.  We know that, even with CPR that is successful and results in revival of the patient, there can be insufficient blood supply to the body’s organs for a period of time.  The brain is particularly susceptible to injury because of inadequate blood floow or oxygen, even for relatively short periods of time.  One technique that has gained popularity in recent years is the use of induced coma combined with hypothermia (lowering the body temperature by several degrees) to reduce the metabolic demands on the brain for a period of about 48 hours.  This allows potentially better recovery of the brain.  We know that such an approach may improve the neurologic outcomes for at least some patients who have suffered cardiac arrest.  This technique appears to have been used in the case of Laurent Vidal.

The last issue is to determine what caused the cardiac arrest.  There’s actually a fairly long list of possible causes.  In the sports setting, for younger athletes the most likely heart-related causes are hypertrophic cardiomyopathy (HCM)–an inherited disorder of the heart muscle; a coronary artery anomaly–an artery that developed abnormally during development; an inherited cardiac ion channel abnormality (eg, long QT syndrome); or arrhythmogenic right ventricular cardiomyopathy (ARVC)–another inherited disorder of the heart muscle.  But sometimes cardiac arrest may be have a non-cardiac cause like pulmonary embolism or stroke.  Even a sharp blow to the chest can produce cardiac arrest, a situation called “comotio cordis.”  The evaluation of survivors of cardiac arrest is done in a systematic way to sort through the various possibilities.  It’s usually possible to determine a cause, but there’s a small chance that no cause is found.

Related Posts:

1.  Sudden cardiac arrest in NCAA student athletes

2.  Dana Vollmer and ICD

3.  Athletes, Sudden Death, and CPR

Filed Under: Famous athletes with heart problems, Heart problems Tagged With: bystander, cardiac arrest, CPR, life support, treatment