Book Review: Haywire Heart

 

 

 

 

 

 

 

 

Check out the recently published “The Haywire Heart” by Chris Case, John Mandrola, MD, and Lennard Zinn.  The book is available at Amazon and other outlets.

You may recall that Case, Mandrola, and Zinn authored an article in VeloNews, entitled “Cycling to Extremes:  Are endurance athletes hurting their hearts by repeatedly pushing beyond what is normal?”  This was a terrific read.  I wrote a previous blog post sharing my thoughts about the article and about the issue of arrhythmias and endurance sport, more generally.  Their article generated much discussion in the cycling and broader endurance sports communities and the interest of readers served as the motivation for their new book.

This is a book about electrical problems in the heart–the various arrhythmias.  Case, Mandrola, and Zinn are in a unique position to bring this topic to life because each has dealt personally with some form of arrhythmia.  And as long time cyclists (and perhaps with some triathlon experience as well), they’re able fashion the discussion to the avid endurance athlete.  From the medical perspective, the field of arrhythmias is rather complicated, both in terms of the underlying mechanisms of disease and the evaluation and treatment of affected patients, but here the authors have found a writing style that is captivating and accessible to the non-medical reader, while retaining much medical detail that will be of interest.  I give them credit because this is hard to do!

I love the title.  With an arrhythmia, the heart is truly “haywire.”  Ignore the line on the cover, though, about “How too much exercise can kill you.”  That’s unlikely to happen and there’s little in the book about that particular issue.  Instead, focus on “what you can do to protect your heart.”  That’s where the value lies here.

The book is organized into 9 chapters.  In Chapters 1-3, the authors describe in detail how the normal heart works, outline how the heart adapts over time to endurance exercise, and introduce the medical aspects of heart attack and arrhythmias, especially for the endurance athlete.  These sections are well-illustrated and are a great primer for any athlete interested in learning more about the heart.

Chapters 4-6 focus on the evidence of a link between long-time endurance exercise and arrhythmias, what to look for in yourself, and what it’s like to receive the diagnosis of an arrhythmia.  Here, the authors speak from personal experience and their observations and advice are valuable.

Chapter 7 deals with the issue of exercise addiction.  We know that exercise is generally healthy, but most of the benefits of exercise accrue with the first few hours per week.  Why, then, do athletes exercise more?  When does one become addicted?  What are the implications?  This is an interesting and pertinent discussion and might provoke some warranted introspection.

Chapter 8 covers the various treatment options for athletes with various arrhythmia problems.  For athletes who don’t have trouble with arrhythmias, the discussion is educational in a broad sense.  For those who do have arrhthymias, though, there is ample detail here to become educated and be better engaged with your doctor(s) as you sort out the best treatment for you.

Finally, in Chapter 9, the authors wrap up with their “takeaway” on how we might prevent arrhythmia problems.

One of my favorite aspects of the book is the inclusion of Case Studies sprinkled throughout the text, where the authors illustrate their points in a side bar with the personal account of an athlete.  These stories bring us the human side of arrhythmias and show how difficult these problems can sometimes be.

This book is for….

  • the athlete with an arrhythmia problem.  There’s a lot of familiar territory here as well as the opportunity to learn more.  An educated patient is the ideal patient.
  • the athlete with simply an interest in the heart.  I can’t think of a better resource to become educated about the workings of the heart, particularly as they relate to the endurance athlete.
  • the athlete (or the athlete’s spouse or parent) who’s afraid of causing harm to the heart through exercise.  Be forewarned and be vigilant.

 

Related Posts:

  1. Heart to Start, by James Beckerman, MD
  2. The Exercise Cure, by Jordan Metzl, MD
  3. Cardiac Athletes, by Lars Andrews

Returning to Exercise (and Training) After Heart Surgery

broken-heart-01-2400px

I’ve had a bunch of requests for a blog post on getting back to exercise or training after heart surgery. These requests usually come from:  1) athletes who are contemplating an upcoming operation and are already worried about if/when/whether they’ll be able to get back to exercise afterwards or 2) athletes who’ve recently had successful operations and are looking to become active once again, but are looking for reassurance that it’s safe to do so.  I marvel every time I see an athlete patient get back to exercise after heart surgery, so I’m always encouraged by these inquiries.

For today’s discussion, let’s confine ourselves to what I call “conventional” heart surgery—the whole collection of heart operations that use a chest incision, with splitting of the breast bone (sternum), and make use of the heart-lung machine for cardiopulmonary bypass during the procedure. We’ll save for another day those procedures that are “less invasive” in some way, use some other incision or approach, and those that don’t make use of the heart-lung machine.  As examples, I’m talking about common operations like coronary artery bypass grafting (CABG) or heart valve repair or replacement.

At the outset, we need to have a big disclaimer.  Athlete patients are all different.  Their operations are different, too—even when we’re talking about just the commonly performed operations.  And because athletes and operations are all different, I can only generalize here.

If you’re an athlete patient, please use this post to become educated about some of the issues and help gather your thoughts for conversations with your own doctor(s). This is the only way to settle on plans that are right for you.

Athletes in this situation should remember that there are very real issues with the safety of exercise.  My best advice is to take things slowly and consult with your doctor(s) frequently.

 

Athletes and Operations are Unique

Athletes who need heart operations can be different in many ways.  Some need operation for congenital, or inherited, conditions they’ve had since birth (eg, atrial septal defect [ASD]).  Others need operation for acquired conditions that take many years to develop (eg, coronary artery disease, aortic aneurysm).  In still others, an emergency operation may be needed for some sort of acute problem (eg, aortic dissection).

In many cases, athletes will have conditions where the heart function is preserved, but some will have conditions where the heart has suffered some sort of damage, and become weakened, over time. Some athletes will be healthy except for their heart condition and others will have other medical conditions that affect not only the operation, but also the recovery.

Finally, athletes will come with all sorts of sports backgrounds and all sorts of future goals. Some will be young and others will be old.  Some will be recreational athletes, some will be exercisers, and some will be competitive athletes.  Some will have had high fitness levels before operation, and others will not.  The demands of the various sports are different, too.  Some have highly “dynamic” nature (eg, running).  Others have a high “static” nature (eg, weightlifting).

Heart operations are different, too.  In some cases, operations can be curative.  In others, the operation might better be thought of as “mending a broken heart.”    Moreover, in some cases the underlying heart condition can take a long time to improve, even if operation is successful.

For all of these reasons, there can be no “one-size-fits-all” prescription for return to activity, exercise, and training.  Instead, the prescription must be individualized.

 

Healing Up

Things need to get healed up after operation.  This should be obvious.

The surgical wounds need to heal after surgery. The skin incision ordinarily heals very quickly.  With either skin staples or absorbable sutures beneath the skin, the surgical wound usually seals in the first few days.  It’s worth paying attention to instructions for showering, bathing, and swimming.  Any infection of the surgical wound can be a major setback to healing.  Pay attention to instructions to watch for swelling, redness, or drainage that might be signs of infection.

Deeper, the breast bone (sternum) is like any other broken bone. We wire the sternum back together and in most cases, the bone knits back together just like any other broken bone.  This is a process that takes many weeks, but we often say that the bone regains about 75% of its strength in the first month, so long as healing proceeds correctly.  During the first month, we generally restrict activities that place stress on the sternum as it heals.  We ask patients to avoid pushing, pulling, reaching, or even just carrying heavy objects (more than 10 pounds).  Many surgeons also restrict driving for the first month.  All of these activity restrictions are important because exercise early after operation must usually involve the lower body, rather than the upper body.

Deeper still, the heart itself must heal up. Regardless of the exact operation, the handiwork here usually involves needle and thread.  The tissues are sewn together or new materials (eg, heart valves) are sewn into the heart.  Although the tissues or devices are fixed securely in place, it takes many weeks or even months for the affected tissues to heal completely.  Your surgeon will be in the best position to comment on the expected period of time that will be needed for healing and to offer advice about any longer term risks to the affected tissues, devices, or prosthetics used that might come with various forms of exercise.

One final point is that healing may be impaired in some patients.  Conditions such as diabetes, a suppressed immune system (eg, from illness or medications such as steroids), or even just poor nutrition before operation can delay healing substantially.

 

Is the heart mended? Or good as new?  Does the disease continue even after the operation?

Thinking ahead to physical activity after operation, one very important consideration is: how healthy is the heart now?  Have we cured the problem?  Or have we mended the problem?  Or, perhaps, have we introduced some new problem?

The important question to consider is:  Does my current heart situation place me at increased risk for a future problem?  And, if so, how big is that risk?

As one example, sometimes an athlete will need operation to correct an atrial septal defect (ASD), an inherited condition.  If this condition is found before any damage has occurred to the heart or lungs, operation is curative and athletes can generally return to any form of sports activities after they’ve healed up.

As another example, sometimes an athlete will need coronary artery bypass surgery after a heart attack, or acute myocardial infarction (MI), in medical terms.  The “plumbing” can be fixed with operation so that blood flow is restored past all (or most) of the blockages in the coronary arteries.  It turns out, though, that it can take up to 2 years for the ruptured plaque that caused the MI to become stabilized.  During that time, the best advice might be to limit strenuous exercise because of the increased risk of repeat MI.

In yet another example, sometimes an athlete will need operation for repair of an aortic aneurysm.  Most often, a portion of the enlarged aorta is “repaired” by replacing the blood vessel with a synthetic, fabric substitute.  After successful operation, though, there may still be mild enlargement of the remaining aorta that deserves surveillance over time for possible enlargement.  Sports activities with a high “static” component (eg, weightlifting), where there can be large increases in the blood pressure, may not be advisable, for fear of accelerating aortic enlargement over time.

These are just 3 examples.  The scenarios are virtually endless.

 

New Medications

For some athletes, things can be so “normal” after heart surgery that no new medications are needed. Sometimes, medications that were required before the operation are no longer needed.  These athletes are fortunate.

For other athletes, though, new medications can be needed either because of the underlying heart condition or because of new hardware that’s been added. As an example, aspirin, beta blockers, and statins are often recommended for athletes who’ve had operation for coronary artery disease.  Each of these medications will have implications for the athlete.  As another example, blood thinners like warfarin (Coumadin) might be prescribed for an athlete with a mechanical heart valve. The anticoagulants also bring a potential risk of unwanted, serious bleeding in the event of bodily injury.  This is a factor which must be weighed when settling on what types of physical activity are safe.

 

Cardiac Rehabilitation

Cardiac rehabilitation, or “rehab” for short, is a supervised program that includes medical evaluation, development of a physical activity program specific for the patient, educational services, and individual and group exercise where the vital signs and EKG can be monitored. The structure of these programs may vary by location, but will usually involve both an inpatient phase and an outpatient phase.

At many heart surgery programs, the inpatient phase of cardiac rehab begins within the first couple days after operation, with both educational and exercise components. There are usually educational offerings about nutrition, medications, lifestyle modifications, and community resources.  There is also an exercise component that is tailored to the patient, usually involving walking at first, where there is close monitoring of the vital signs, the heart rhythm, and the oxygen level in the blood stream.  It’s important early after operation, together with the patient and family, to establish expectations and goals about physical activity.

Cardiac rehab continues with an outpatient phase, where patients can enroll in a monitored exercise program, often in a group setting, with several sessions per week. Athletes may sometimes fail to see the value in such a program, but these programs can actually provide some much needed structure to the early return to exercise.  Most importantly, these programs can provide confidence for the athlete that once they leave a structured setting, things will still be okay with their heart and safety during exercise.  I’d recommend a full cardiac rehab program for all athletes who are looking to return to exercise after operation.

For most patients, walking is the most appropriate exercise early after operation, with an emphasis on moderate exertion and increasing duration.

 

Support

Having a good support system is important for any patient after heart surgery. It’s particularly true for the athlete who is returning to a formal exercise or training program after heart surgery.  You can envision this support system as having a set of layers.

Closest to home, athletes will benefit from a family that helps to encourage a return to physical activity and works to make this possible. Family is usually the best support for ensuring continued good nutrition, ensuring restful sleep (including naps), and seeing to other various needs after the patient returns home from the hospital.

When it comes to returning to structured, independent exercise, I believe that a group setting is often best. We all know that it’s more motivating when we have friends to meet for the morning run or ride.  In the case of athletes with recent heart surgery, it’s also reassuring for the athlete to know that company is nearby if some sort of medical problem crops up during an exercise session.  Even if this possibility is unlikely, a group of fellow exercisers can provide some needed confidence.

Being able to share experiences with other athletes who’ve had similar surgery can often be helpful, even if those athletes aren’t close to home. There are a variety of support groups with an online presence, but two of my favorites are the Ironheart Foundation and Cardiac Athletes.  Both offer an opportunity to network with similar athletes, learn from their experiences, and also have a forum to “give back.”  You’re not alone.  Many other athlete patients are dealing with the same or very similar situations.

Lastly, for athletes who are looking for some good reading material, one good resource is a book entitled “Heart to Start,” by cardiologist James Beckerman, MD. I’ve written a review about this book previously here at the blog.  The book describes a gradual, structured path to resuming aerobic exercise and conditioning once cardiac rehab is completed.

 

Follow-up

It’s wise for athlete patients to put together a robust framework of medical support as they return to physical activity after heart surgery. Your “team” should include at least your heart surgeon, your cardiologist, and your primary care provider.  At the beginning, there might also be a nutritionist, your cardiac rehab specialist, or physical therapist, as well.  Perhaps you can think of other important team members as well.

Continuous dialog with your team is essential. Only you will be able to describe your goals and ambitions and ask for feedback about the advisability and safety issues.  Don’t assume that your doctor(s) will understand what it means to train for the masters national swimming championship or a marathon or a 70.3 triathlon.  If you envision several hours of aerobic exercise as well as strength training each weak, be prepared to describe this in detail, with expected exertion levels or heart rates, so that your doctor(s) can know exactly what you have in mind.  Don’t hold back.

Athletes should arrange for periodic visits with their doctor(s) so that they can discuss their plans for physical activity, share their experiences, both good and bad, develop plans, agree on any restrictions, and monitor progress. This is good advice for any athlete, but particularly good advice for athletes who have had heart surgery.

In thinking about what sorts of exercise or training is safe for their athlete patients, doctors don’t always have a bunch of accumulated scientific evidence to rely upon.  I’ve written previously here at the blog about consensus recommendations about the safety of sports for young, competitive athletes with various cardiac conditions.  These recommendations weren’t developed specifically for adult, recreational athletes after heart surgery, but they may provide a starting point for discussion.  Often, though, doctors must rely upon judgment and personal experience with similar patients.

 

Warning signs of a problem

I’ve talked previously about 5 important warning signs of potential heart problems: chest pain/discomfort, unusual shortness of breath, palpitations, blacking out (or nearly so), and unusual fatigue.  Athletes should be vigilant about these general warning signs and report them to their doctor(s).

There may also be additional warning signs to watch for, that are very specific to the type of surgery an athlete has had. Some examples would include:

  • For those with a mechanical heart valve, stroke symptoms (temporary or permanent loss of sensation or muscle weakness) would be important
  • For those with coronary artery disease, return of angina symptoms (chest pain/discomfort) would be important
  • For those with aortic aneurysms, return of chest, back, or abdominal pain would be important
  • For those with arrhythmias, return of an irregular heartbeat or palpitations would be important.

Sometime in the first few weeks after operation, you should have a discussion with your doctor(s) about any specific warning signs that are most important for you.  And then you should be vigilant.

 

Summary

Let me summarize the important points:

  • Each athlete’s situation will be different
  • Whatever the approach to returning to activity, pay attention to getting healed up, as a first priority
  • Participate in a cardiac rehab program
  • Consider your “new,” current heart situation as you make plans about the safety of exercise
  • Rely on your support network as you return to physical activity
  • Assemble a medical “team” to help as you return to physical activity
  • Make a list and be vigilant about warning signs that are specific to your circumstance

 

Related Posts:

  1. A Conversation with Cyclist and Heart Transplant Recipient, Paul Langlois
  2. Coach John Fox and Aortic Valve Replacement

In the Medical News: Does Heart Function Suffer in Long-term Endurance Athletes?

Gym

Background

Moderate amounts of exercise produce a multitude of health benefits.  Both the American Heart Association (AHA) and World Health Association (WHO) now recommend 150 min per week of moderate intensity exercise for adults.

Some recent observations, though, have raised the question:  when it comes to exercise, can there be too much of a good thing?  And, more specifically, can too much exercise somehow be harmful to the heart.  With the increased popularity of adult recreational and competitive sports–particularly in cycling, running, and triathlon–there is a growing number of adults who are pursuing exercise far in excess of the AHA and WHO recommendations.  The questions surrounding the issue of “too much exercise” are very pertinent.

A few recent articles in the popular press summarize some of the findings and frame the debate:

The worrisome observations have generally been made in small numbers of symptomatic athletes, in groups of athletes whose athletic history–or “dose” of exercise is poorly characterized, or in studies that were designed for some purpose other than determining the effects of “too much exercise” on the heart.

I’ve said previously that these observations deserve our attention, but that we really need more targeted investigation into this issue.  In a study just released online (ahead of print) in the medical journal, Circulation, Philipp Bohm and colleagues from the Institute of Sports and Preventive Medicine at Saarland University in Germany bring us an important new look at “extreme” exercisers.

 

The Study

This new study focuses on a group of 33 healthy, male, Caucasian competitive elite master endurance athletes.  This group of athletes was selected so that it included only athletes with a 10+ year continuous training history of 10+ hours per week; the average training was 16.7 hours per week and the average training history was 29 +/- 8 years.  These athletes had an average age of 47 years (range, 30-60 years).  This group of athletes included:

  • Sixteen were former elite professional athletes
  • One Ironman world champion and several 2nd and 3rd place finishers
  • The world record holder at the long distance triathlon
  • A 2nd ranked cyclist of the Vuelta a Espana (Tour of Spain)
  • Six Olympic athletes in the sports of triathlon and rowing
  • A former winner of the Munich Marathon.

A control group consisted of 33 healthy Caucasian men who were pair-matched for age, height, and weight.  This control group was selected to include only individuals who exercised <3 hours per week.

All of the subjects underwent a comprehensive evaluation that included:

  • History and physical examination (to exclude any athlete with a history of overt heart disease, high blood pressure, smoking history, or other risk factor for heart disease)
  • Resting EKG
  • Cardiopulmonary exercise testing
  • Echocardiography, including tissue-Doppler imaging and speckle tracking
  • Contrast-enhanced cardiovascular magnetic resonance imaging (CMR).

Interestingly, none of the athletes presented with, or reported a history of, atrial fibrillation.

There were several unsurprising, and expected differences between the athletes and the controls.  First, the resting heart rate (HR) for the athletes (48 +/- 7 beats per minute) was slower than for the controls (65 +/- 11 beats per minute).  Second, the size of the athletes’ hearts was significantly greater.  The left ventricular (LV) mass for the athletes’ hearts (188 +/- 26 g) was significantly greater than the controls (124 +/- 23 g).  Similarly, the right ventricular (RV) mass for the athletes’ hearts (70 +/- 13 g) was significantly greater than the controls (49 +/- 11 g).  Among the 33 athletes, 22 met a traditional definition of “athlete’s heart,” with a heart volume of 13+ mL/kg of body weight.  As expected, the VO2 max of the athletes (60 +/-5 ml/kg/min) was significantly greater than controls (37 +/- 6 ml/kg/min).

The important results of the study were those that showed no difference between the athletes and the controls.  With echocardiography, there was no difference between athletes and controls in LV longitudinal strain or RV longitudinal strain–measures of the strength of contraction.  Using CMR, there was no difference between athletes and controls in LV ejection fraction (EF) or RV EF–again, measures of the strength of contraction.  One athlete (3%) had a LV EF slightly less than normal, at 45%.  No athletes or control subjects had abnormalities of the RV that could be suggestive of the potentially life-threatening problem of arrhythmogenic right ventricular cardiomyopathy (ARVC).  One athlete (3%) had late gadolinium enhancement (LGE) on CMR that suggested previous, asymptomatic inflammation of the pericardium, the sac in which the heart sits.  LGE analysis showed no evidence of unusual fibrosis or scarring in either athletes or controls.

 

My Thoughts

Kudos to the investigators here.  The study is apparently self-funded.  It’s expensive to perform this kind of testing; in the United States, the costs of this study would easily run into the many hundreds of thousands of dollars.  Kudos, too, to the editors at Circulation.  There is a tremendous bias against publishing so-called “negative” studies, where no important differences are found between study and control groups.  Many “negative” studies are left on the editing room floor–and we never hear about them.

This is an important study because it is the first to gather and study a group of long-term endurance athletes with a substantial, and defined, training load over an extended period of time.  The results deserve our attention.  At nearly 17 hours per week of exercise or training, these athletes obviously far exceeded the contemporary recommendations for 150 minutes of moderate exercise per week.  Just doing some quick math, the average cumulative exercise “dose” is more than 25,000 hours.  As I’ve said many times before, it’s worth asking the question if such an exercise pattern can be harmful to the heart over the long term.  This is a terrific group of athletes to study in order to help answer that question.

We must keep in mind that, with just 33 athletes, this is a small study.  With only 33 athletes, it’s obviously possible to miss something that would be found in the 34th athlete.  We must also keep in mind that the study only involves male athletes.  Female athletes are not immune from heart problems and deserve study, too.

It is a striking finding that no athlete was found to have atrial fibrillation–either now, or in the past.  Moreover, no athletes experienced arrhythmias during the cardiopulmonary exercise test.  A number of previous studies have reported a 2- to 5-fold increase in atrial arrhythmias among long-term endurance athletes.  Like the current study, all of those previous studies have involved small number of athletes.  None, though, have focused on athletes like these, with such extensive exercise and training histories.  In my opinion, endurance athletes broadly can take some comfort from the findings of this new study with regard to the potential risk of atrial arrhythmias.

It’s noteworthy that the LV and RV function of the athletes was no different than the controls.  One athlete had mildly depressed LV function, for reasons that are not clear.  In short, though, the study found no evidence of cardiac damage–at least, in terms of the pumping function–that accrued over the long term.  We know that there is some depression of LV and RV function immediately after an intense bout of exercise (eg, marathon, long-distance triathlon, long-distance cycling event), but we also know that these changes resolve within days to weeks afterward.  The current study argues against the hypothesis that repeated episodes of intense exercise (ie, many marathons or triathlons over a lifetime) might result in a decrease in LV or RV function.  Again, this is encouraging news for endurance athletes.

Finally, the CMR and LGE results are important.  Aside from the 1 athlete with possible previous pericarditis, there were no worrisome findings of fibrosis or scarring that might be attributable to injury from repeated episodes of intense, strenuous exercise.  These LGE findings are at odds with some observations of unexplained fibrosis in other cohorts of long-time runners, even if the consequences of such findings remain uncertain.  This area of investigation deserves further attention.  For now, I’d say that long-time participation in endurance sports does not necessarily result in unexplained fibrosis in the heart.

 

Related Posts:

  1. Thoughts on the recent VeloNews article
  2. PRO/CON:  Prolonged intense exercise leads to heart damage
  3. Do elite athletes live longer?

 

A Conversation with Cyclist and Heart Transplant Recipient, Paul Langlois

LangloisPic

 

 

 

 

 

 

I recently met Paul Langlois–online, at least.  Many thanks to Joe Friel for making the kind introduction.

I’ve had a chance to chat with Paul and thought I’d share his interesting story here at the blog.  Paul is a long-time recreational and competitive cyclist who developed a rare medical condition called amyloidosis.  His heart was particularly affected.  He developed life-threatening heart failure and required a heart transplant as the only effective treatment.  He has now made a great recovery and has returned to his passion of cycling.

I know that heart transplantation remains a bit of a mystery for most non-medical folks.  In part, it’s just a rather uncommon operation.  Last year in the United States, for example, 2,655 individuals underwent heart transplant operations.  Here at the University of Mississippi, I’m involved in about 10-12 heart transplant operations each year.  For the patients who need the transplant operation, the results are usually quite remarkable.

It’s very unusual, though, for lifelong athletes to need a heart transplant operation.  And that’s why Paul’s story is so very intriguing.  He kindly agreed to answer my questions about his experience….

Thinking back to before your heart transplant, can you tell us a little about your interest in cycling?  When did you get started?  Were you involved in team cycling?  Or competitions, of various sorts?

Yes, I had been actively involved in competitive Masters cycling since the age of 30, attaining Category 2 status on the Road, Track, and Cyclocross.  Before I became a cyclist, I competed in collegiate rowing at the Coast Guard Academy, winning three national titles.  After college, I got hooked on the running boom and completed four marathons (qualified for Boston), ran many shorter events, and did some medium distance triathlons.  Problems with my right knee resulted in two surgeries when I was 30, when I switched my competitive focus entirely to cycling, which was became part of a long rehab process for the knee.  Only a few years later at age 34, I won the All-Military National Cycling Championships stage race in Colorado Springs. Over the years, I had competed at over 20 various Masters National Championship events for road, track, and cyclocross. Somewhat surprisingly, some of my best performances on the bike were attained in my early 50s, when I won two consecutive years as Best All Around Rider 50+ in the Mid-Atlantic District, and rode a Personal Best 40K Time Trial in 54 minutes. I raced with numerous amateur teams in different parts of the country, as the Coast Guard typically relocated me to a new duty station every three years.  I served for 30 years in the Coast Guard, primarily as a helicopter rescue pilot, and retired as a Captain in 2006.  After retirement, and settling in Santa Rosa, California, I continued non-stop racing, until a year before my diagnosis at age 56, mentioned below.

I understand that you were diagnosed with cardiac amyloidosis, a rare cause of heart failure.  How did you and your doctors discover this problem?

It took me a bit more than one year of frustration before I was properly diagnosed. I attribute my eventual diagnosis in large part through my own keen awareness of my slow, but steady deterioration in fitness level. Initially, I noticed that I was having trouble keeping up with my teammates on training rides, especially when climbing.  And then, soon thereafter, I had to pull out of a criterium race after two laps, experiencing almost no aerobic capacity, in the same race I had nearly won the year prior. I first checked with my primary care physician, who commented “I was simply getting older”, which I refused to believe was the problem. I was later referred to a cardiologist and a pulmonologist for stress tests and neither test came back with any abnormality.  Over the next six months, I progressed into becoming short of breath when climbing one flight of stairs, and nearly fainting when I quickly rose out of a chair.  I noticed my legs and ankles were swelling in a way which I had never seen.  Finally, I checked myself into my local ER, and by a stroke of luck, a talented cardiologist was on duty who performed an Echocardiogram, an EKG, a chest xray, and did some lab work.  He noticed I had very high protein in my urine, and suspected I might have Amyloidosis. The following week, I had a heart biopsy, and a special test revealed I was positive for Amyloidosis.  This was the cause of my heart failing, and it readily became apparent to me that it was a life and death situation.  I was referred to Stanford Hospital for further evaluation, as they have one of the few clinics in the USA with significant experience treating this rare blood disease.

Once heart transplantation was recommended, how long did you spend on the waiting list?  And during the waiting period, were you able to exercise?  What was your fitness level right before the transplant operation?

My first consultation at Stanford was with their Cardiology Dept, which recommended heart transplant, as no other option was available to keep me alive.  I went through the pre-qualifying tests successfully over a period of six weeks, until I was allowed to be listed for transplant.  I have Blood Type AB, and was listed as Priority 1B, and I was extremely fortunate to only have to wait for eight days until a good match was found for me.  Leading up to the transplant, my fitness level had diminished considerably over the past year due to the onset of heart failure, although I still attempted to get exercise, primarily through cycling. As an example, in the months just before transplant, I was not able to get my heart rate over 130, when giving it my hardest effort, whereas the previous year before I became ill, I could easily exceed 165 during a hard effort.

Tell us a little bit about your early recovery after the transplant operation.  How long were you in the hospital?  When did you begin walking, afterwards?  How long did it take to get healed up?

Heart Transplant is obviously a very traumatic surgery, including the need to separate the center of the rib cage to perform the transplant.  And so the body needs many weeks to heal and rest afterward.  I spent only one week in the hospital.  I was up and walking slowly around the ward within three days.  After discharge, I was required to live nearby Stanford for many weeks with a Caregiver (my wife Linda), to allow for frequent clinical check ups at Stanford, including many heart biopsies, Echos, and labwork, with a focus on ensuring no organ rejection might be taking place. I began exercising very gently at first, and then with steadily increasing intensity and distance as the weeks went by.  Within one month and much to my surprise, I completed a six mile hilly walk around the Stanford Campus. I had to wear a protective mask whenever I was outside or around people to minimize any chance of catching an infection or virus.  I finally got to go home at almost two months after the transplant which was a wonderful day.

I understand that you’re back to cycling now.  What’s your routine?  Are you still competing?

Yes, I have been able to get back into cycling, but have not been able to develop the required fitness to race competitively.  Having said that, I still have the mental mindset to someday be competitive, and so I keep training with the belief that I may attain that level again.  Unlike many who have heart transplant, my case is much more complex and challenging, as I still have the underlying blood disease to deal with, which required a stem cell transplant just six months after the heart transplant.  As I approach the five year mark, I have endured almost nonstop chemotherapy treatments, and clinical trial drugs. Amyloidosis has no known cause, and still has no proven cure.  My kidneys have become involved with Amyloid damage (Stage 3 failure), and I have to battle fatigue with anemia. As a result, my ability to train hard and go for long endurance is diminished compared to my earlier success. But, as an example, I was able to complete two 75 mile charity rides within two years after my transplant, and still routinely cycle 3-4 times per week, typically between 1-3 hours each session.  I also spend lots of time in the gym with weight training and physical rehab, as I also elected to have a total right knee replacement two years ago, which set me back for awhile.  Despite the pain, side effects from medication, and lesser ability to push myself, I enjoy getting out and riding the bike frequently.  In the past few months, I have begun to challenge myself on much steeper and longer climbs, and have started to incorporate various interval sessions and sprint workouts. I am getting back into group riding with my teammates again.  I have a goal to try and enter some low key racing next year in my 60+ age group, provided my health remains stable.

As you know, the autonomic nerves (from the “involuntary” nervous system) that supply the heart are cut during the transplant operation.  As a result, some of the usual mechanisms that influence the heart rate during exertion aren’t available after heart transplant operation.  Have you noticed this?  And, if so, how has this situation affected your exercise routine or training?

Yes, without any question, I have noticed significant changes in how my heart beats and reacts to demands.  Since denervation takes place after transplant, my new heart has a resting heart beat of about 85, whereas it used to be about 44.   In the first year after transplant, I noticed during exercise that it would take me about 20 minutes to get my heart rate to a maximum of 120-125.   And then, once I eased off the intensity and started to rest, the heart rate would not drop down very quickly.  But as the years have gone by, and I have trained consistently, my new heart responds to effort much quicker, and so I can get my heart to rise up over 120 in less than five minutes, and my maximum heart rate after climbing a long hill is about 155.  And when I slow down, the heart rate drops much quicker than the first year, but not nearly as fast as when I was in great shape with my original heart. My resting heart rate has not dropped with time, and it remains just above 80 at its lowest resting rate, which I am told is quite normal for heart transplant patients. When I ride, I try to warm up gradually for the first 15 minutes, before applying much intensity, and I have found that I tend to really feel much better after about one hour on the bike.  But, I also can report that I do not recover nearly as fast as I used to after a long workout, and so I typically do not ride on consecutive days, to ensure I get sufficient rest and recovery.

Recipients of organ transplants must take anti-rejection medications, usually forever.  These medications sometimes hinder the body from dealing effectively with infection.  Has this issue affected your cycling?  Do you have strategies to prevent illness?

Yes, I definitely have concerns about having to take two different immuno-suppressant medications every day, supposedly for the rest of my life.  On one hand, they serve to prevent organ rejection, but on the flip side, my body is much more prone to catching virus and various illnesses.  As an example, I had a very difficult year last year (2015), when after the total knee replacement, I came down with shingles all over my body, which took over a month to clear, including hospitalization for a week.  Following that episode, I came down with pneumonia, which had me inpatient in isolation for two weeks, and didn’t clear until two months later.  If that wasn’t bad enough, this past April, my spleen ruptured due to Amyloid involvement, requiring an emergency splenectomy.  While not all of these may be attributable  to the anti-rejection drugs, I believe these medications make my body very fragile and less able to fight infections and germs.  As a result, I try to be very careful to minimize exposure, especially in public places around large gatherings. I constantly wash my hands and avoid people who appear to be sick.  My predicament sometimes means I have to avoid certain social situations in order to lessen my exposure. I wear a protective mask whenever going into hospitals or clinics.  I have learned that winter time is a very high risk time for me, so I ensure extra precautions, especially during the Holidays.

Related Posts:

1. Another Heart Transplant Triathlete

2. Ironheart Racing Team

 

 

 

Updated 2015 ACC/AHA Guidelines on Competitive Athletes with Cardiovascular Abnormalities

BlackboardGuidelines

 

 

 

 

The American College of Cardiology (ACC) and American Heart Association (AHA) have recently released a Scientific Statement on “Eligibility and Disqualification Recommendations for Competitive Athletes with Cardiovascular Abnormalities:  Preamble, Principles, and General Considerations.”  This 2015 edition is an update for the previous guidelines that were published as Proceedings from the 36th Bethesda Conference in 2005.

The new Guidelines were assembled by a large group of experts who were organized into 15 task forces.  Each of these task forces considered the current scientific evidence, graded the evidence, and reached consensus conclusions about recommendations that could be supported.  As such, this collection of recommendations represents the best available consensus expert opinion today in the United States.

It’s important to know that there is also a similar set of guidelines developed by the cardiology community in Europe.  There are differences between the ACC/AHA and European recommendations that often stem from legitimate differences of opinion.

It is also important to remember that the new ACC/AHA guidelines are targeted toward the young “competitive athlete.”  The authors define such an athlete as one “who participates in an organized team or individual sport that requires regular competition against others as a central component, places a high premium on excellence and achievement, and requires some form of systematic (and usually intense) training.”  As such, these guidelines are targeted primarily at student athletes of high school and college age (up through 25 years).  That said, the various recommendations may well be applicable to other athletes, including:  young but non-competitive athletes; older competitive athletes; and adult recreational athletes or exercisers.  Particular judgment must be used by physicians and athletes when extending the recommendations beyond the intended target population.

The new guidelines are some 115 pages long.  It’s not my intention to summarize things succinctly here in a blog post, but I thought it would be useful to point out what’s new….and what caught my attention in each of the 15 sections….

Task Force 1:  Classification of Sport–Dynamic, Static, and Impact

There is now a refinement of the former categorization of sports according to their “static” and “dynamic” components.  A new summary chart still uses the former I-II-III (static) and A-B-C (dynamic) scheme, but recognizes that there is actually a continuum along each axis.  In addition, a new table provides a useful categorization of sports according to their risk of impact, both at the junior high school and high school/college levels.  New recommendations for athletes taking various forms of anticoagulant medications caution against activities where impact injuries may be expected.

Task Force 2:  Preparticipation Screening

Preparticipation screening is widely applied in the United States for school-based athletic programs.  Controversy remains, though, about the effectiveness of history and physical examination alone for identifying serious cardiovascular abnormalities.  This Task Force continues to endorse the AHA 14-point screening guidelines or those of the American Academy of Pediatrics Preparticipation Physical Examination, suggesting particular value in standardization of questionnaire forms used.  The new guidelines suggest that the use of ECG in addition to history and physical examination may be appropriate in “relatively small cohorts” of young athletes, where physician expertise is available for counseling and follow-up of test results.  Mandatory screening with ECG is not recommended in young athletes or non-athletes.

Task Force 3:  Hypertrophic Cardiomyopathy (HCM), Arrhythmogenic Right Venricular Cardiomyopathy (ARVC), and Other Cardiomyopathies

The Task Force recognizes the heterogeneity of disease among athletes with hypertrophic cardiomyopathy (HCM) and advises that judgment is needed in the application of the recommendations in specific situations.  New from 2005, the guidelines now recognize that athletes with genotype-positive, phenotype-negative HCM (ie, carrying a gene but no overt manifestation[s] of the disease [yet]), and particularly if there is no family history of HCM-related sudden cardiac death, may participate in athletics.  The new guidelines advise against the use of pharmacologic agents or an implantable cardioverter-defibrillator (ICD) solely to facilitate participation in sports.  There are no major changes in the recommendations regarding ARVC, other cardiomyopathies, myocarditis, or pericarditis.

Task Force 4:  Congenital Heart Disease

There is a very long list of conditions that, together, constitute “congenital heart disease.”  These are inherited conditions that usually manifest during childhood, but sometimes these conditions may remain unrecognized until adulthood.  Exercise prescriptions are very specific to the particular condition, but the Task Force recognizes that many athletes with “corrected” congenital heart disease may participate fully.  Compared with 2005, the new recommendations remain similar or unchanged for:  atrial septal defect (ASD), ventricular septal defect (VSD), patent ductus arteriosus (PDA), pulmonary valve stenosis, aortic valve stenosis, coarctation of the aorta, elevated pulmonary vascular resistance (PVR), ventricular dysfunction after surgery for congenital heart disease, cyanotic heart disease including Tetralogy of Fallot, and Ebstein’s anomaly.  The new guidelines now provide greater detail in the recommendations for patients with transposition of the great arteries (TGA) treated by either atrial switch (eg, Mustard procedure, Senning procedure) or by more contemporary arterial switch operations.  In the area of coronary artery anomalies, additional evidence and experience now allows for recommendations for various subsets of patients, including those who have had surgical correction.

Task Force 5:  Valvular Heart Disease

The 4 most common valve problems are aortic stenosis (AS), aortic regurgitation (AR), mitral stenosis (MS), and mitral regurgitation (MR).  In many respects, the new guidelines parallel the former guidelines.  The new guidelines specifically recommend that athletes with these conditions, even if mild, should be evaluated yearly to determine whether sports participation can continue safely.  A new recommendation is offered for athletes with severe AR and normal left ventricular dimensions and function; it may be reasonable for these athletes to participate fully if they have normal exercise tolerance and echocardiography shows no progression of ventricular size or dysfunction.  MS is probably the least common of these valve conditions.  The new recommendations suggest that exercise testing to the anticipated level of sports activity may be useful in patients with MS to ensure that no symptoms develop.  The recommendations specifically recommend only low-intensity activities for those with severe MS, but most of these individuals would probably best be treated with valve repair or replacement.  Exercise testing is also recommended for asymptomatic patients with MR, again to the anticipated level of sports activity.

For those patients who have undergone operative procedures for valve repair or replacement, the guidelines make the important point that decisions about future participation in sports activities be made together, by both athlete and physician(s).

Task Force 6:  Hypertension

The new guidelines recommend that athletes with sustained hypertension undergo screening echocardiography.  For those with left ventricular hypertrophy (LVH) beyond what might be expected from “athlete’s heart,” activities should be curtailed until the hypertension is controlled.  The guidelines also remind athletes and treating physicians that some medications used for the treatment of hypertension (eg, beta-blockers, diuretics) are considered banned substances by some sports governing bodies.  Athletes should be aware that a therapeutic use exemption (TUE) may be required for participation, both outside and during competition.

Task Force 7:  Aortic Diseases, including Marfan Syndrome

There was a separate Task Force that reported on the collection of aortic diseases in the new guidelines.  In the previous version of the guidelines, these conditions were parceled out among the other task forces.  The new organization is helpful because all of the pertinent recommendations can easily be found in one place.  Particular mention is made of the importance that aortic size (eg, diameter) be considered in the context of the athlete’s size (eg, age, gender, body surface area).  In many circumstances, use of a z-score–the number of standard deviations above/below the mean for a size- or age-specific population–may be more appropriate than absolute measurements alone.

Athletes with Marfan syndrome or any of the other connective tissue disorders that affect the aorta (eg, Loeys-Dietz syndrome, Ehlers-Danlos syndrome, familial thoracic aortic aneurysm and dissection [TAAD] syndrome) should receive frequent reevaluation with echocardiogram, computed tomography (CT), and/or magnetic resonance imaging (MRI).  The recommendations regarding safe levels of activity parallel the previous guidelines.

For athletes with bicuspid aortic valve (BAV), the new guidelines focus on z-scores to define the degree of aortic enlargement:  not enlarged, z-score < 2; mild enlargement, z-score 2 to 2.5; moderate enlargement, z-score 2.5 to 3.5; severe enlargement, z-score >3.5.  Athletes with mild enlargement of the aorta should be confined to low-and moderate-intensity static and dynamic sports that do not have a likelihood of bodily injury.  In this group, intense weight training should be avoided.  Athletes with moderate enlargement of the aorta should participate in only low-intensity sports that do not have a likelihood of bodily injury.  And finally, those with a severely enlarged aorta should not participate in competitive sports.

Task Force 8:  Coronary Artery Disease

We think of coronary artery disease (CAD) as a disease of older individuals, but there are sometimes young athletes with acquired diseases of the coronary arteries.

One important aspect of the new guidelines in the area of coronary artery disease is the recommendation that athletes should participate in decisions about safe exercise with their physician(s), taking into consideration the health and psychological benefits of exercise as well as any potential risks.  The new guidelines are explicit that asymptomatic athletes with known CAD but with normal LV function and no inducible problems with stress testing should be able to participate fully in their sports.  For those who have had myocardial infarction (MI) or coronary revascularization procedure (eg, coronary artery bypass grafting [CABG] or coronary stenting), participation in sports activities should be curtailed for a period of 3 months.

A new section is devoted to the problem of spontaneous coronary artery dissection, a condition where a tear develops in the inner wall of the coronary artery itself, without warning and seemingly without explanation.  The new guidelines recognize that there is not yet sufficient experience and evidence with this problem to formulate specific recommendations, but that it may be reasonable to restrict affected athletes from high-intensity sports.

Also new in these guidelines is a section devoted to heart transplant recipients.  The guidelines recognize that for many such patients, participation in sports activities can be safe, especially if there is annual stress testing designed to demonstrate the safety of exercise up to the level of exertion that is anticipated during sports activities.

Task Force 9:  Arrhythmias

The section on athletes with arrhythmias is the longest and most complicated section of the new guidelines, in part because there are many different arrhythmias to consider.  This is an area where particular expertise on the part of the physician is required to make sound judgments about participation.

The recommendations suggest that athletes with permanent pacemakers can participate fully in sports if there is no limiting underlying heart condition or symptoms.  Those who are pacemaker-dependent (ie, require the pacemaker continuously to generate the heartbeat) should avoid sports in which a risk of collision might result in damage to the pacemaker system.  All others with a pacemaker should recognize the inherent risks of bodily injury that might also damage the pacemaker.

Atrial fibrillation (AF) deserves special mention because it is so common.  For athletes with AF, the new guidelines recommend evaluation that includes thyroid function tests, queries for drug use, an ECG, and an echocardiogram.  The new guidelines remind us that athletes with well-tolerated and low-risk AF may participate fully.  Those who are taking anticoagulants other than aspirin alone should consider the bleeding risk in deciding which sports activities may be safe.  Finally, the new guidelines recognize that catheter ablation for AF might eliminate the need for medications and should be considered in athlete patients.

The new guidelines suggest a similar evaluation for patient with atrial flutter.  For this condition, catheter ablation has a high likelihood of success and should be considered.

For athletes with SVT (eg, AV nodal reentry tachycardia, AV reciprocating tachycardia, atrial tachycardia), catheter ablation should be considered.

For athletes with ventricular arrhythmias (eg, premature ventricular contractions [PVC’s], non-sustained ventricular tachycardia [VT], sustained VT, or ventricular fibrillation), careful evaluation for underlying structural heart disease.  The algorithms for determining safe levels of exercise are complex and athletes should seek expert guidance.

The new guidelines have a new section on syncope, the problem of blacking out unexpectedly.  Athletes with exercise-induced syncope should be excluded from sports activities until a full evaluation is completed.  Cardiac causes of syncope can sometimes be life-threatening.  If the cause of syncope is determined to be neurally mediated, athletes can resume all sports activities once treatment measures are shown to be effective.  If no cause for the syncope can be determined, athletes should not participate in sports activities in which a transient loss of consciousness might result in serious bodily injury.

The final new section relates to athletes who have an implanted internal cardioverter-defibrillator (ICD).  The guidelines recommend that the indications for ICD implantation be no different for athletes and non-athletes.  In particular, an ICD should not be implanted solely to allow participation in sports.  For athletes with an ICD who have no episodes of ventricular arrhythmias that necessitate device defibrillation for a period of 3 months, participation in low-intensity sports activities may be reasonable.  Decisions about participation in sports activities with higher degrees of intensity, though, should consider the possibilities of greater likelihood of inappropriate shocks or device dislodgement with contact sports.

Task Force 10:  Cardiac Channelopathies

The new guidelines include the recommendations from a new Task Force devoted to the cardiac channelopathies.  These disorders are typically characterized by a structurally normal heart but a predisposition to develop syncope, seizures, or cardiac arrest from VT or VF.  At a cellular level, these disorders are caused by abnormalities in various ion channels in cardiac muscle cells that ordinarily permit the coordinated ebb and flow of charged ions with each heartbeat.  Approximately 1 per 1,000 individuals is affected by such conditions.  The most common types are long QT syndrome (LQTS), catecholaminergic polymorphic ventricular tachycardia (CPVT), Brugada syndrome (BrS), early repolarization syndrome, short QT syndrome, and possibly idiopathic VF.

Historically, athletes with any channelopathy have been restricted from sports activities of all types because of the potential risk of sudden death.  Since the 2005 guidelines, though, much has been learned about the genetics, clinical manifestations, and course of these disorders.  It is now thought that some affected athletes may participate safely in sports activities.  The key, though, is careful evaluation by a cardiologist who specializes in heart rhythm disorders or by a genetic cardiologist.

Task Force 11:  Drugs and Performance Enhancing Substances

Not surprisingly, the guidelines contain the recommendation that athletes meet their nutritional needs through a healthy, balanced diet without dietary supplements.  The guidelines further recommend that the use of performance-enhancing drugs (PEDs) and supplements be prohibited by schools, universities, and other sponsoring organizations as a condition for participation.  The guidelines suggest the use of the principle of “unreasonable risk” (the potential for risk in the absence of defined benefit) as the standard for banning or recommending avoidance of substances being evaluated for use by athletes.

Importantly, the guidelines recommend that athletes receive formal education about the potential risks of PEDs and supplements, including the specific risks of sudden death and acute myocardial infarction.

Task Force 12:  Emergency Action Plans, CPR, AED’s

The new guidelines include the recommendation that schools and other organizations that host athletic events have an emergency action plan that includes provision of basic life support (BLS), the use of an automatic external defibrillator (AED), and activation of the emergency medical system (EMS).  Coaches and athletic trainers should be trained in CPR and the use of an AED and the AED should be available within 5 minutes, if needed.

Task Force 13:  Commotio Cordis

Commotio cordis is an unusual event, but t is important for coaches, athletes, and officials to be aware of this possibility and be prepared to respond to a lifeless victim.  Prompt initiation of bystander CPR and early defibrillation are the keys to survival.

Task Force 14:  Sickle Cell Trait

A section devoted to sickle cell trait (SCT) is included in the new guidelines.  Although athletes with SCT may participate fully in their sports, the guidelines recommend strategies such as adequate rest and hydration to reduce the likelihood of an event occurring during sports participation.  This risk is greatest during periods of high environmental temperature or extreme altitude.

Task Force 15:  Legal Aspects

The section of the new guidelines devoted to legal aspects considers the various conflicts that may arise when the guidelines are put into practice.

Related Posts:

  1. New ACC/AHA Heart Health Guidelines and Implications for Athletes
  2. Cardiac Screening for Adult Recreational Athletes
  3. Debate Continues on Cardiac Screening for Young Athletes